10Gb/s 80Km SFP+ ZR Optical Receiver

PRODUCT FEATURES

- Up to 11.1Gbps Data Links
- Power dissipation < 0.5W
- APD receiver
- Metal enclosure, for lower EMI
- 2-wire interface with integrated Digital Diagnostic monitoring
- Hot-pluggable SFP+ footprint
- Specifications compliant with SFF 8472
- Compliant with SFP+ MSA with LC connector
- Single 3.3V power supply
- Case operating temperature range:0°C to 70°C

APPLICATIONS

- 10G Base-ZR/ZW
- 10G Storage system

STANDARD

- Compliant to SFF-8431
- Compliant with IEEE 802.3ae 10GBASE-ZR and 10GBASE-ZW
- RoHS Compliant

PRODUCT DESCRIPTION

SFP+ ZR transceivers is 1550nm InGaAs-APD photo-detector receiver based 10Gigabit SFP+ transceiver, which is designed to receive optical data over single mode optical fiber for link length up to 80km.Digital diagnostics functions are available via a 2-wire serial interface, as specified in the SFF-8472, which allows real-time access to device operating parameters such as transceiver temperature, received optical power and transceiver supply voltage.

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	NOTE
Maximum Supply Voltage	Vcc3	-0.5		4.0	V	
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	5		95	%	

II. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tcase	0	-	70	°C	Without air flow
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	ICC	-		150	mA	
Data Rate	BR		10.3125		Gbps	

III. Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	NOTE
Receiver						
Receiver Sensitivity	R SEN			-23.0	dBm	1
Input Saturation Power (Overload)	Psat	-6			dBm	
Wavelength Range	$\lambda_{_{ m C}}$	1270		1610	nm	
Receiver Reflectance	R _{rx}			-27	dB	
LOS De-Assert	LOS _D			-26	dBm	
LOS Assert	LOS	-32			dBm	
LOS Hysteresis		0.5		6	dB	

Notes:

1. Measured with conformance test signal for BER = 10^-12.@10.3125Gbps, PRBS=2^31-1,NRZ

Parameter	Symbol	Min	Тур	Max	Unit	NOTE
Supply Voltage	Vcc3	3.13		3.47	V	
Supply Current	Icc			150	mA	
Module total power	P			0.5	W	
Receiver						
Differential data output swing	Vout-pp	500	650	800	mV	1
Data output rise and fall time	Tr,Tf	30			ps	
LOS Fault	Vlos-fault	2		Vcc-host	V	
LOS Normal	Vlos-nor	GND		GND+0.8	V	

IV. Electrical Characteristics

Notes:

1. LOS is an open collector output. Should be pulled-up with 4.7k Ω -10 k Ω on the host board. Normal operation is logic 0, loss of signal is lo

V. Pin Descriptions

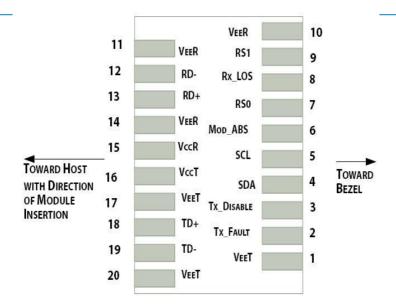


Diagram of Host Board Connector Block Pin Numbers and Name

Pin	Symbol	Name/Description	NOTE
1	VEET	Transmitter Ground	1
2	Tx_FAULT	No connection required	2
3	Tx_DIS	No connection required	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate select 0	5
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation	2
9	RS1	No connection required	6
10	VEER	Receiver Ground	1
11	VEER	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver DATA out. AC Coupled	
14	VEER	Receiver Ground	1
15	VCCR	Receiver Power Supply	
16	VCCT	No connection required	
17	VEET	Transmitter Ground	1
18	TD+	No connection required	
19	TD-	No connection required	
20	VEET	Transmitter Ground	1

Notes:

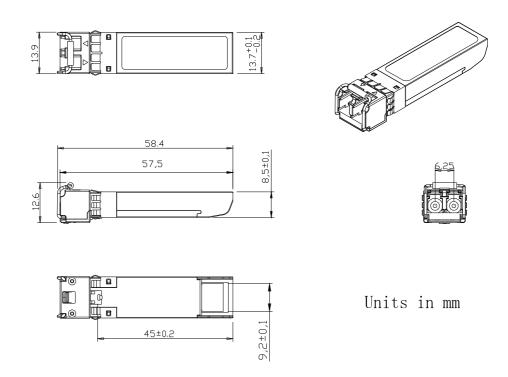
- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.13V and 3.6V.
- 3. Tx_Disable is an input contact with a $4.7 \text{ k}\Omega$ to $10 \text{ k}\Omega$ pull-up to VccT inside the module

- 4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range $4.7 \text{ k}\Omega$ to $10 \text{ k}\Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

VI. Digital Diagnostic Functions

As defined by the SFP+ MSA, SFP+ transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- · Received optical power
- Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range. The operating and diagnostics information is monitored and reported by a Digital Diagnostics

Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the SFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

VII. Host - Transceiver Interface Block Diagram

VIII. Outline Dimensions

SFP+ transceivers are compliant with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

IX. Regulatory Compliance

SFP+ transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Reference	Performance
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards

Appendix A. Document Revision

Version No.	Date	Description
1.0	2010-09-01	Preliminary datasheet

	-		- 0	•
ĸ	_	v	- /	1

2.0	2011-09-10	Update format and company's logo